Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473273

RESUMO

Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.

2.
Gynecol Oncol ; 178: 80-88, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820398

RESUMO

OBJECTIVE: Inhibition of the MAPK pathway by MEK inhibitors (MEKi) is currently a therapeutic standard in several cancer types, including ovarian low-grade serous carcinoma (LGSC). A common MAPK pathway alteration in tubo-ovarian high-grade serous carcinoma (HGSC) is the genomic inactivation of neurofibromin 1 (NF1). The primary objectives of our study were to survey the prevalence of NF1 inactivation in the principal ovarian carcinoma histotype as well as to evaluate its associations with clinico-pathological parameters and key biomarkers including BRCA1/2 status in HGSC. METHODS: A recently commercialized NF1 antibody (clone NFC) was orthogonally validated on an automated immunohistochemistry (IHC) platform and IHC was performed on tissue microarrays containing 2140 ovarian carcinoma cases. Expression was interpreted as loss/inactivated (complete or subclonal) versus normal/retained. RESULTS: Loss of NF1 expression was detected in 250/1429 (17.4%) HGSC including 11% with subclonal loss. Survival of NF1-inactivated HGSC patients was intermediate between favorable BRCA1/2 mutated HGSC and unfavorable CCNE1 high-level amplified HGSC. NF1 inactivation was mutually exclusive with CCNE1 high-level amplifications, co-occurred with RB1 loss and occurred at similar frequencies in BRCA1/2 mutated versus wild-type HGSC. NF1 loss was found in 21/286 (7.3%) endometrioid carcinomas with a favorable prognostic association (p = 0.048), and in 4/64 (5.9%) LGSC, mutually exclusive with other driver events. CONCLUSIONS: NF1 inactivation occurs in a significant subset of BRCA1/2 wild-type HGSC and a subset of LGSC. While the functional effects of NF1 inactivation need to be further characterized, this signifies a potential therapeutic opportunity to explore targeting NF1 inactivation in these tumors.


Assuntos
Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1 , Neurofibromina 1/genética , Imuno-Histoquímica , Proteína BRCA2 , Neoplasias Ovarianas/patologia , Carcinoma Endometrioide/patologia , Cistadenocarcinoma Seroso/patologia , Carcinoma Epitelial do Ovário
3.
Cell Rep ; 42(7): 112670, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392382

RESUMO

Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.


Assuntos
Efrinas , Neoplasias , Efrinas/genética , Proteômica , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Transdução de Sinais , Receptores ErbB/genética , Neoplasias/genética
4.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376581

RESUMO

The global COVID-19 pandemic continues with continued cases worldwide and the emergence of new SARS-CoV-2 variants. In our study, we have developed novel tools with applications for screening antivirals, identifying virus-host dependencies, and characterizing viral variants. Using reverse genetics, we rescued SARS-CoV-2 Wuhan1 (D614G variant) wild type (WTFL) and reporter virus (NLucFL) using molecular BAC clones. The replication kinetics, plaque morphology, and titers were comparable between viruses rescued from molecular clones and a clinical isolate (VIDO-01 strain). Furthermore, the reporter SARS-CoV-2 NLucFL virus exhibited robust luciferase values over the time course of infection and was used to develop a rapid antiviral assay using remdesivir as proof-of-principle. In addition, as a tool to study lung-relevant virus-host interactions, we established novel human lung cell lines that support SARS-CoV-2 infection with high virus-induced cytopathology. Six lung cell lines (NCI-H23, A549, NCI-H1703, NCI-H520, NCI-H226, and HCC827) and HEK293T cells were transduced to stably express ACE2 and tested for their ability to support virus infection. A549ACE2 B1 and HEK293TACE2 A2 cell lines exhibited more than 70% virus-induced cell death, and a novel lung cell line, NCI-H23ACE2 A3, showed about ~99% cell death post-infection. These cell lines are ideal for assays relying on live-dead selection, such as CRISPR knockout and activation screens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Citologia , Pandemias , Genética Reversa , Células HEK293 , Pulmão , Antivirais/farmacologia
5.
Clin Cancer Res ; 29(14): 2686-2701, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976175

RESUMO

PURPOSE: Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN: Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS: Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS: Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Methods Mol Biol ; 2614: 397-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587138

RESUMO

Large-scale genetic screens are becoming increasingly used as powerful tools to query the genome to identify therapeutic targets in cancer. The advent of the CRISPR technology has revolutionized the effectiveness of these screens and has made it possible to carry out loss-of-function screens to identify cancer-specific genetic interactions. Such loss-of-function screens can be performed in silico, in vitro, and in vivo, depending on the scale of the screen, as well as research questions to be answered. Performing screens in vivo has its challenges but also advantages, providing opportunities to study the tumor microenvironment and cancer immunity. In this chapter, we present a procedural framework and associated notes for conducting in vivo CRISPR knockout screens in cancer models to study cancer biology, anti-tumor immune responses, tumor microenvironment, and predicting treatment responses.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Neoplasias/genética , Microambiente Tumoral/genética
7.
Sci Rep ; 12(1): 15663, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123435

RESUMO

The lack of targeted therapies for triple-negative breast cancer (TNBC) contributes to their high mortality rates and high risk of relapse compared to other subtypes of breast cancer. Most TNBCs (75%) have downregulated the expression of CREB3L1 (cAMP-responsive element binding protein 3 like 1), a transcription factor and metastasis suppressor that represses genes that promote cancer progression and metastasis. In this report, we screened an FDA-approved drug library and identified four drugs that were highly cytotoxic towards HCC1806 CREB3L1-deficient TNBC cells. These four drugs were: (1) palbociclib isethionate, a CDK4/6 inhibitor, (2) lanatocide C (also named isolanid), a Na+/K+-ATPase inhibitor, (3) cladribine, a nucleoside analog, and (4) homoharringtonine (also named omacetaxine mepesuccinate), a protein translation inhibitor. Homoharringtonine consistently showed the most cytotoxicity towards an additional six TNBC cell lines (BT549, HCC1395, HCC38, Hs578T, MDA-MB-157, MDA-MB-436), and several luminal A breast cancer cell lines (HCC1428, MCF7, T47D, ZR-75-1). All four drugs were then separately evaluated for possible synergy with the chemotherapy agents, doxorubicin (an anthracycline) and paclitaxel (a microtubule stabilizing agent). A strong synergy was observed using the combination of homoharringtonine and paclitaxel, with high cytotoxicity towards TNBC cells at lower concentrations than when each was used separately.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Adenosina Trifosfatases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cladribina/uso terapêutico , Doxorrubicina/uso terapêutico , Excipientes , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Nucleosídeos/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
8.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077749

RESUMO

Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro. Here, we treated canines with MDR lymphoma with metformin to assess clinical and tumoral responses, including changes in MDR biomarkers, and used mRNA microarrays to determine differential gene expression. Metformin reduced MDR protein markers in all canines in the study. Microarrays performed on mRNAs gathered through longitudinal tumor sampling identified a 290 gene set that was enriched in Anaphase Promoting Complex (APC) substrates and additional mRNAs associated with slowed mitotic progression in MDR samples compared to skin controls. mRNAs from a canine that went into remission showed that APC substrate mRNAs were decreased, indicating that the APC was activated during remission. In vitro validation using canine lymphoma cells selected for resistance to chemotherapeutic drugs confirmed that APC activation restored MDR chemosensitivity, and that APC activity was reduced in MDR cells. This supports the idea that rapidly pushing MDR cells that harbor high loads of chromosome instability through mitosis, by activating the APC, contributes to improved survival and disease-free duration.

9.
Cells ; 11(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883689

RESUMO

Neuroendocrine prostate cancer (NEPC) represents a highly aggressive form of prostate tumors. NEPC results from trans-differentiated castration-resistant prostate cancer (CRPC) with increasing evidence indicating that the incidence of NEPC often results from the adaptive response to androgen deprivation therapy. Recent studies have shown that a subset of NEPC exhibits overexpression of the MYCN oncogene along with the loss of tumor suppressing TP53 and RB1 activities. N-MYC is structurally disordered with no binding pockets available on its surface and so far, no clinically approved drug is available. We adopted a drug-repurposing strategy, screened ~1800 drug molecules, and identified fludarabine phosphate to preferentially inhibit the proliferation of N-MYC overexpressing NEPC cells by inducing reactive oxygen species (ROS). We also show that fludarabine phosphate affects N-MYC protein levels and N-MYC transcriptional targets in NEPC cells. Moreover, enhanced ROS production destabilizes N-MYC protein by inhibiting AKT signaling and is responsible for the reduced survival of NEPC cells and tumors. Our results indicate that increasing ROS production by the administration of fludarabine phosphate may represent an effective treatment option for patients with N-MYC overexpressing NEPC tumors.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Humanos , Masculino , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/uso terapêutico , Fosfato de Vidarabina/análogos & derivados
10.
Cell Rep ; 39(8): 110856, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613581

RESUMO

Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.


Assuntos
Infecções por Vírus de DNA , Interferon Tipo I , Leucemia Mieloide Aguda , Trifosfato de Adenosina , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
11.
IUBMB Life ; 74(6): 496-507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184384

RESUMO

The human hepatocyte nuclear factor 1 homeobox A (HNF1A) gene loci express the protein-coding HNF1A transcript and a long non-coding RNA in the anti-sense (HNF1A-AS1) direction. HNF1A-AS1 is expressed in numerous types of cancers and poor clinical outcomes such as higher mortality rates, greater metastatic capacity, and poor prognosis of the disease are the results of this expression. In this study, we determined the epigenetic features of the HNF1A gene loci, and expression and cellular localization of HNF1A-AS1 RNA, HNF1A RNA, and HNF1A protein in colorectal cancer (HT-29, HTC116, RKO, and SW480) and normal colon epithelial (CCD841) cells. The HT-29 HNF1A gene had active histone marks (H3K4me3, H3K27ac) and DNase 1 accessible sites at the promoter regions of the HNF1A and HNF1A-AS1 genes. These epigenetic marks were not observed in the other colorectal cancer cells or in the normal colon epithelial cells. Consistent with the active gene epigenetic signature of the HNF1A gene in HT-29 cells, HNF1A protein, and HNF1A/HNF1A-AS1 transcripts were detected in HT-29 cells but poorly, if at all observed, in the other cell types. In HT-29 cells, HNF1A-AS1 localized to the nucleus and was found to bind to the enhancer of zeste homolog 2 (EZH2, a member of PRC2 complex) and potentially form RNA-DNA triplexes with DNase 1 accessible sites in the HT-29 genome. These activities of HNF1A-AS1 may contribute to the oncogenic properties of this long non-coding RNA.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Desoxirribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Front Oncol ; 12: 1087989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761420

RESUMO

DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.

13.
Pathogens ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832669

RESUMO

(1) Background: There is a strong need for prevention and treatment strategies for COVID-19 that are not impacted by SARS-CoV-2 mutations emerging in variants of concern. After virus infection, host ER resident sigma receptors form direct interactions with non-structural SARS-CoV-2 proteins present in the replication complex. (2) Methods: In this work, highly specific sigma receptor ligands were investigated for their ability to inhibit both SARS-CoV-2 genome replication and virus induced cellular toxicity. This study found antiviral activity associated with agonism of the sigma-1 receptor (e.g., SA4503), ligation of the sigma-2 receptor (e.g., CM398), and a combination of the two pathways (e.g., AZ66). (3) Results: Intermolecular contacts between these ligands and sigma receptors were identified by structural modeling. (4) Conclusions: Sigma receptor ligands and drugs with off-target sigma receptor binding characteristics were effective at inhibiting SARS-CoV-2 infection in primate and human cells, representing a potential therapeutic avenue for COVID-19 prevention and treatment.

14.
Methods Mol Biol ; 2381: 333-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590285

RESUMO

Cancer is one of the leading causes of death and chromosomal instability (CIN) is a hallmark feature of cancer. CIN, a source of genetic variation in either altered chromosome number or structure contributes to tumor heterogeneity and has become a hot topic in recent years prominently for its role in therapeutic responses. Synthetic lethality and synthetic rescue based approaches, for example, advancing CRISPR-Cas9 platform, are emerging as a powerful strategy to identify new potential targets to selectively eradicate cancer cells. Unfortunately, only few of them are further explored therapeutically due to the difficulty in linking these targets to small molecules for pharmacological intervention. This, however, can be alleviated by the efforts to bring chemical, bioactivity, and genomic data together, as well as established computational approaches. In this chapter, we will discuss some of these advances, including established databases and in silico target-ligand prediction, with the aim to navigate through the synthetically available chemical space to the biologically targetable landscape, and eventually, to the chemical modeling of synthetic lethality and synthetic rescue interactions, that are of great clinical and pharmaceutical relevance and significance.


Assuntos
Mutações Sintéticas Letais , Instabilidade Cromossômica , Genômica , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452919

RESUMO

The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.


Assuntos
Bicarbonatos , Neoplasias , Liases de Carbono-Enxofre , Anidrase Carbônica IX , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Hipóxia , Ferro , Neoplasias/genética
16.
BMC Infect Dis ; 21(1): 655, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233649

RESUMO

BACKGROUND: Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. METHODS: We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student's t-test from at least four independent experiments. RESULTS: We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. CONCLUSIONS: We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy.


Assuntos
Apoptose/genética , Proteínas de Fluorescência Verde , Infecções por HIV , Macrófagos , RNA Interferente Pequeno , Linfócitos T CD4-Positivos/virologia , Estudo de Associação Genômica Ampla , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Linfócitos T
17.
Sci Rep ; 11(1): 7590, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828156

RESUMO

Gastro-esophageal (GE) cancers are one of the major causes of cancer-related death in the world. There is a need for novel biomarkers in the management of GE cancers, to yield predictive response to the available therapies. Our study aims to identify leading genes that are differentially regulated in patients with these cancers. We explored the expression data for those genes whose protein products can be detected in the plasma using the Cancer Genome Atlas to identify leading genes that are differentially regulated in patients with GE cancers. Our work predicted several candidates as potential biomarkers for distinct stages of GE cancers, including previously identified CST1, INHBA, STMN1, whose expression correlated with cancer recurrence, or resistance to adjuvant therapies or surgery. To define the predictive accuracy of these genes as possible biomarkers, we constructed a co-expression network and performed complex network analysis to measure the importance of the genes in terms of a ratio of closeness centrality (RCC). Furthermore, to measure the significance of these differentially regulated genes, we constructed an SVM classifier using machine learning approach and verified these genes by using receiver operator characteristic (ROC) curve as an evaluation metric. The area under the curve measure was > 0.9 for both the overexpressed and downregulated genes suggesting the potential use and reliability of these candidates as biomarkers. In summary, we identified leading differentially expressed genes in GE cancers that can be detected in the plasma proteome. These genes have potential to become diagnostic and therapeutic biomarkers for early detection of cancer, recurrence following surgery and for development of targeted treatment.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/sangue , Bases de Dados Genéticas , Detecção Precoce de Câncer/métodos , Neoplasias Esofágicas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Plasma/metabolismo , Proteoma/genética , Proteômica/métodos , Curva ROC , Reprodutibilidade dos Testes , Neoplasias Gástricas/metabolismo , Máquina de Vetores de Suporte , Transcriptoma/genética
18.
Cancers (Basel) ; 13(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430292

RESUMO

Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell-cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal-epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.

19.
Nucleic Acids Res ; 49(1): 322-339, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330905

RESUMO

Many APOBEC cytidine deaminase members are known to induce 'off-target' cytidine deaminations in 5'TC motifs in genomic DNA that contribute to cancer evolution. In this report, we characterized APOBEC1, which is a possible cancer related APOBEC since APOBEC1 mRNA is highly expressed in certain types of tumors, such as lung adenocarcinoma. We found a low level of APOBEC1-induced DNA damage, as measured by γH2AX foci, in genomic DNA of a lung cancer cell line that correlated to its inability to compete in vitro with replication protein A (RPA) for ssDNA. This suggests that RPA can act as a defense against off-target deamination for some APOBEC enzymes. Overall, the data support the model that the ability of an APOBEC to compete with RPA can better predict genomic damage than combined analysis of mRNA expression levels in tumors and analysis of mutation signatures.


Assuntos
Desaminase APOBEC-1/antagonistas & inibidores , DNA de Cadeia Simples/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína de Replicação A/metabolismo , Desaminase APOBEC-1/metabolismo , Ligação Competitiva , Linhagem Celular , Linhagem Celular Tumoral , Citidina/metabolismo , Dano ao DNA , Replicação do DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , DNA de Cadeia Simples/química , Desaminação , Difusão Facilitada , Histonas/análise , Humanos , Pulmão/citologia , Pulmão/embriologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/genética , Neoplasias/patologia , Especificidade de Órgãos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/genética
20.
Cancers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066048

RESUMO

Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...